Dante

2023-March-24

Contents

1 Tal	ble of Contents
1.1	Overview
1.2	System controls
1.3	Configuration parameters
1.4	Run-time statistics
1.5	medm screens
1.6	Multi-element systems
1.7	MCA mode
1.8	MCA mapping mode
1.9	List mode
1.1	O ADC trace waveforms
1.1	1 IOC startup script
1.1	2 Performance
	1.12.1 Dante8 free-running mapping mode
	1.12.2 Dante8 externally triggered mapping mode

author Mark Rivers, University of Chicago

CHAPTER 1

Table of Contents

1.1 Overview

This is an EPICS driver for the XGLab Dante digital x-ray spectroscopy system. The source code is in the dante repository in the Github epics-modules project. The Dante is available in single channel (Dante1) and 8-channel (Dante8) versions. This module is intended to work with either, though it has currently only been tested on the single-channel version. In this document NumBoards refers to the number of enabled input channels, e.g. 1 for a Dante1, up to 8 for a Dante8, and >8 for systems with more than one Dante8 daisy-chained together. If a channel is disabled then it is not counted in NumBoards.

The Dante can collect data in 3 different modes:

- Single MCA spectrum. It acquires a single MCA spectrum on all channels.
- MCA mapping mode. It acquires multiple spectra in rapid succession, and it often used for making an x-ray map where there is an MCA spectrum for each channel at each pixel. The advance to the next pixel can come from an internal clock or an external trigger.
- List mapping mode. It acquires each x-ray event energy and timestamp in a list buffer.

The Dante driver is derived from the base class asynNDArrayDriver, which is part of the EPICS areaDetector package. The allows the Dante driver to use all of the areaDetector plugins for file saving in MCA mapping and list modes, and for other purposes. It also implements the mca interface from the EPICS mca module. The EPICS mca record can be used to display the spectra and control the basic operation including Regions-of-Interest (ROIs).

The Dante driver can be used on both Windows and Linux. A Windows machine with a USB interface is required to load new firmware. Otherwise the module can be used from either Linux or Windows over Ethernet. The Linux library provided can run on most Linux versions, including RHEL7/Centos7.

This document does not attempt to give an explanation of the principles of operation of the Dante, or a detailed explanation of the many configuration parameters for the digital pulse processing. The user should consult the DanteManual for this information.

1.2 System controls

These records are in the file dante.template. This database is loaded once for the Dante system. It provides control of the system-wide settings for the system.

EPICS	Reco	r d rv-	Description
record	types		
names	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	string	
Collect-	mbbo	, Dan-	Controls the data collection mode. Choices are "MCA" (0), "MCA Mapping" (1) and
Mode,		teCol-	"List" (2).
Collect-	moor	lect-	
Mode_RB	v	Mode	
Gating-		, Dan-	Controls the gating mode. Choices are "Free running" (0), "Trig rising" (1), "Trig
Mode,	mbbi		falling" (2), "Trig both" (3), "Gate high" (4), "Gate low" (5).
Gating-	moor	Gat-	(4), (4) , (5) .
Mode_RB	v	ing-	
WIOUC_KD	Ů ∎	Mode	
NumM-	mbbo		NThMn Girlba NorFMIS A channels to use. Choices are 1024, 2048, 4096.
CAChan-	mbbi	, MCA_	[10] Indef = 1024, 2048, 4090.
nels,	moor		
NumM-			
CAChan-			
nels_RBV		D	
Poll-	ao,	Dan-	The time between polls when reading completion status, MCA mapping data, and list made data from the driver, 0.01 second is a reasonable value that will provide good
Time,	ai	tePoll-	mode data from the driver. 0.01 second is a reasonable value that will provide good
Poll-	. 7	Time	response and resource utilization.
Time_RB			
Prese-	ao	MCA_	PSEESEE_RESALreal time. Set this to 0 to count forever in MCA mode or List mode.
tReal	1	NT A	
EraseS-	bo	N.A.	Processing this record starts acquisition for all boards in the selected CollectMode.
tart			
StartAll	bo	MCA_	SHARES ACOUNT RECord starts acquisition for all boards in the selected CollectMode. This
	-		record should not be used by higher-level software, it is processed by EraseStart.
MCAAc-	busy	N.A.	This record goes to 1 ("Collecting") when EraseStart is processed. It goes back to 0
quire-			("Done")when 3 conditions are satisfied. 1) MCAAcquiring is 0; 2) All MCA records
Busy			have .ACQG field=0; 3)AcquireBusy from areaDetector=0. The last condition can en-
			sure that all plugins are done processing if WaitForPlugins is set.
MCAAc-	bi	MCA_	ACCOURSES 1 when the Dante driver itself is acquiring, and 0 when it is done. This
quiring			record is generally not used by higher level software, use MCAAcquireBusy instead,
			since it indicates when all components are done.
StopAll	bo	MCA_	SHOPesAidQUMRFecord stops acquisition for all boards in the selected CollectMode. This
			only needs to be used to terminate acquisition before it would otherwise stop because
			PresetReal or NumMappingPoints have been reached.
ReadAll	bo	N.A.	Processing this record reads the MCA data and statistics for all boards. This .SCAN field
			of this record is typically set to periodic, i.e. "1 second", ".1 second", etc. to provide
			user feedback while acquisition is in progress. It can be set to "Passive" and the system
			will still read the data once when acquisition completes. This can be used to improve
			performance at very short PresetReal times. This record is disabled when acquisition is
			complete to reduce unneeded resource usage.
ReadA1-	bo	N.A.	Processing this record reads the MCA data and statistics for all boards. This record
lOnce			is processed by ReadAll. It can be manually processed to read the data even when
			acquisition is complete.
Elapse-	ai	MCA	ELLARSHDerREAlltime.
dReal			
Elaps-	ai	MCA	ETLARS HDe LIVE time.
edLive			-
Dead-	ai	Dant-	The cummulative deadtime.
Time		eDead	-
		Time	
IDead-	ai	Dan-	The "instantaneous" deadtime since the previous readout.
1.2. Syste	em cor	ntrols	5
		Dead-	
		Time	
	. I		

1.3 Configuration parameters

These records control the configuration of the digital signal processing. The readback (_RBV) values may differ slightly from the output values because of the discrete nature of the system clocks and MCA bins.

These parameters are specific to a single board, and are contained in DanteN.template.

EPICS		rodrvInfo	Description
record	types	string	
names			
Enable-	bo,	Dan-	Enables (1) or disables (0) a board in a Dante8. This allows using fewer than 8
Board,	bi	teEn-	channels on a Dante8.
Enable-		able-	
Board_RBV		Board	
InputMode,	mbbo	, Dan-	The analog input mode. Choices are "DC_HiImp" (0), "DC_LoImp" (1)
Input-	mbbi	teInput-	"AC_Slow" (2), and "AC_Fast" (3).
Mode_RBV		Mode	
Input-	bo,	Dan-	The pre-amp output polarity. Choices are "Pos." (0) and "Neg." (1).
Polarity,	bi	teIn-	
InputPolar-		verted-	
ity_RBV		Input	
MaxEnergy,	ao,	Dan-	The actual energy of the last channel. The user must provide this value based or
MaxEn-	ai	teMax-	the energy calibration. It is used to provide meaningful units for FastThreshold
ergy_RBV		Energy	EnergyThreshold, and BaselineThreshold.
Analo-	lon-	Dan-	The analog offset applied to the input signal, 0 to 255. This offset must be
gOffset,	gout,	teAnal-	adjusted to keep the input signal within the range of the ADC. This should be
AnalogOff-	lon-	ogOff-	adjusted using the ADC Trace plot with a long sampling to see the range of the
set_RBV	gin	set	input signal through a reset event.
Reset-	lon-	Dan-	The reset threshold in ADC units per N 8 ns sample intervals. The Dante detect
Threshold,	gout,	teReset-	a reset the signal changes by more than this amount. The standard firmware use
Reset-	lon-	Thresh-	N=6 and this ResetThreshold value. The high-rate firmware uses $N=1$ and fixe
Thresh-	gin	old	ResetThreshold=256, so this parameter has no effect.
old_RBV	gm	olu	Reset meshold=250, so this parameter has no eneet.
ResetRe-	ao,	Dan-	The time in microseconds to wait after a reset event.
coveryTime,	ai,	teRese-	The time in incroseconds to wait after a reset event.
ResetRe-	ai	tRecov-	
		eryTime	
covery- Time_RBV		erymne	
Gain,	20	Dante-	The gain which controls the number of ADC units per MCA bin. Gains o
Gain_RBV	ao, ai	Gain	1.0-8.0 are typical.
FastThresh-		Dante-	The fast filter threshold in keV.
old, Fast-	ao, ai	FastFil-	The fast lifter threshold lift key.
Thresh-		terThresh-	
old_RBV		old	
			The peaking time of the fast filter in microseconds.
FastPeak-	ao,	Dan- taEdga	The peaking time of the fast litter in inicroseconds.
ingTime,	ai	teEdge-	
Fast-		Peak-	
Peaking-		ingTime	
Time_RBV		Dar	The flat ten time of the fact filter in missesses 1
FastFlat-	ao,	Dan-	The flat top time of the fast filter in microseconds.
TopTime, FastFlatTop	ai	teEdge- EletTop	
FastFlatTop-		FlatTop	
Time_RBV		Dag	The energy filter threaded in 1. M
Ener-	ao,	Dan-	The energy filter threshold in keV.
gyThresh-	ai	teEner-	
old, Ener-		gyFil-	
gyThresh-		terThresh-	
old_RBV		old	
Peaking-	ao,	Dante-	The peaking time of the slow filter in microseconds.
Time,	ai	Peak-	
Peaking-		ingTime	
Time_RBV	ation	aramotor	S
			⁵ The maximum peaking time of the slow filter in microseconds. Used only wit
ingTime,	ai	teMax-	the high-rate firmware. Must be set to 0 when using the standard firmware.
Max-		Peak-	
Peaking-		ingTime	

1.4 Run-time statistics

These are the records for run-time statistics.

These parameters are specific to a single board, and are contained in DanteN.template.

EPICS record names	Record types	drvInfo string	Description
ElapsedRealTime	ai	MCA_ELAPSED_REAL	The elapsed real time in seconds.
ElapsedLiveTime	ai	MCA_ELAPSED_LIVE	The elapsed live time in seconds.
InputCountRate	ai	DanteInputCountRate	The input count rate in kHz.
OutputCountRate	ai	DanteOutputCountRate	The output count rate in kHz.
Triggers	longin	DanteTriggers	The number of triggers received.
Events	longin	DanteEvents	The number of events received.
FastDeadTime	longin	DanteEdgeDTime	The fast deadtime in clock ticks.
F1DeadTime	longin	DanteFilt1DT	The filter 1 deadtime in clock ticks.
ZeroCounts	longin	DanteZeroCounts	The number of zero count events.
BaselineCount	longin	DanteBaselinesValue	The number of baseline events.
PileUp	longin	DantePUPValue	The number of pileup events.
F1PileUp	longin	DantePUPF1Value	The number of filter 1 pileup events.
NotF1PileUp	longin	DantePUPNotF1Value	The number of not filter 1 pileup events.
ResetCounts	longin	DanteResetCounterValue	The number of reset events.
LastTimeStamp	ai	DanteLastTimeStamp	The last timestamp time in clock ticks.

1.5 medm screens

The following is the main MEDM screen dante1.adl. This screen is used with the single-channel Dante1. The following is the main MEDM screen dante8.adl. This screen is used with the 8-channel Dante8.

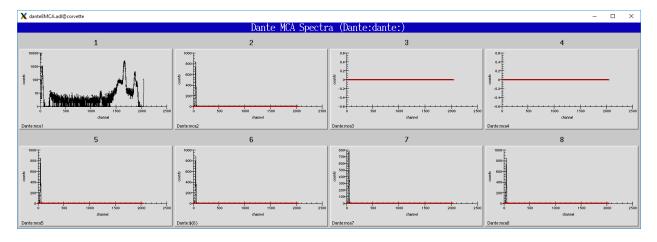
1.6 Multi-element systems

Multi-element detector (MED) systems use an EPICS State Notation Language (SNL) program to synchronize and copy PVs.

These are the records for multi-element detector systems. They are contained in danteMED.template.

EPICS	Reco	ndescription
record	type	
names		
SNL-	bi	Indicates whether or not the SNL program is running.
Con-		
nected		
Dead-	ai	The average deadtime of all the enabled boards.
Time		
IDead-	ai	The average instantaneous deadtime of all the enabled boards.
Time		
Copy[X	XbX6]	Copies the setting XXX from board 0 to all other enabled boards. XXX can be any of the config-
		uration parameters described above, for example Gain, AnalogOffset, etc. XXX can also be the
		definition of the ROIs for the MCA records. In this case the copy can be either by MCA channel
		number, or by x-ray energy, using the calibration coefficients in the MCA record.

X dante1.adl@corvette		– – ×
	Dante MCA Control (Dante:dan	te1:)
Setup	Acquire	Configuration
asyn port DANTE1	Done	Fast peaking time (us) 0.200 0.200
EPICS name Dante:dante1:	Acquire Start Stop	Fast threshold (keV) 2.400 2.402
Manufacturer XGLab	Elapsed Preset	Fast flat top time (us) 0.010 0.008
Model Dante	Real time 5.64 10.00	Peaking time (us) 0.250 0.256
Serial number 164,54,160,181	Live time 5.64	Max. peaking time (us) 2.000 1.984
Firmware version 4.0.9	Instant dead time (%) 0.00	Flat top time (us) 0.100 0.096
SDK version 3,7,13,0	Average dead time (%) 0.00	Energy threshold (keV) 0.000 0.000
Driver version 1.0.0	CurrentPixel 3051	Baseline threshold (keV) 0.000 0.000
ADCore version 3,10,0	Poll time 0.100 0.100	Max. rise time (us) 0.250 0.248
Connected	Read rate 1 second 💷 Read	Reset recovery time (us) 4.000 4.000
Connection Connect Disconnect	# Queued arrays O	Zero peak freq. (Hz) 1000.0 1000.0
Debugging 🖳	Wait for plugins 🔜 💌 🖃	Baseline samples 64 64
Statistics	Acquire busy Done	Gain 7.000 7.000
ICR (kHz) 0.00	Array counter 🛛 1	Input mode DC_HiImp = DC_HiIm
0CR (kHz) 0.00	Array rate 0.00	Input polarity 🔤 Pos. 🖃 Pos.
	Array callbacks Enable I Enable	Analog offset 128 128
Triggers 0 Events 0	MCA plotMCA plot	Base offset 🛛 🖉 🛛 🖉
Events V Fast dead time 0	ADC trace plot DTrace plot	Reset threshold 🛛 🔍 🛛
F1 Dead time 0	Acquisition Setup	Deconvolution time (us) 0.000 0.000
Zero counts 5641	Acg. mode	Maximum energy 30.00 30.00
Baseline count 6856412	MCA channels 4096 4096	Plugins
Pileup 0	Mapping points 10 10	All File B ROI B
F1 Pileup 0	Gate mode Free running - Free running	Stats & Other #1 Other #2
Not F1 Pileup 0	List size 4096 4096	
Reset counts 0	1030	
Reset Counts v		


	Dante MCA Control (Dante:da	nte:)
Setup asyn port DANTE1 EPICS name Dante:dante: Manufacturer XGLab Model Dante Serial number 164, 54, 160, 186 Firmware version 4, 0, 9 SDK version 3, 7, 13, 0 Driver version 1, 0, 0 ADCore version 3, 10, 0 Connected Connection Connect Disconnect Debugging D Plugins All File D ROI D Stats D Dother #1 Dother #2	Acquire Acquire Start Stop Elapsed Preset Real time 3.90 5.00 Live time 3.85 Instant dead time (%) 0.18 Average dead time (%) 0.18 CurrentPixel 0 Poll time 0.010 0.010 Read rate .1 second . Read # Queued arrays 0 Wait for plugins Mo Acquire busy Acquiring Image counter 0 0 Image rate 0.00 Array callbacks Enable Enable Plots @Plots	MCA Setup Collect mode MCA MCA MCA channels 2048 2048 Mapping points 10 10 Gating mode Free running Free runnin List buffer size 4006 4096 Multi-channel DPP Parameters QDPP Params MCA Plots QMCA Plots MCA ROIS QMCA Plots MCA ROIS QMCA ROIS ADC Traces QHOC Traces Statistics QStatistics SNL Connected Connected

Dante

X dante8Parameters.adl@corvette								-	- 🗆 X
Dante DPP Parameters (Dante:dante:)									
	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5	Channel 6	Channel 7	Channel 8	
Enable	Disable Enable	Disable Enable	Disable Enable	Disable Enable	Disable Enable	Disable Enable	Dissble Enable	Disable Enable	
Fast peaking time (us)	0.200 0.200	0.200 0.200	0.200 0.200	0.200 0.200	0.200 0.200	0.200 0.200	0.200 0.200	0.200 0.200	Copy 1 -> Al
Fast threshold (ke∀)	2.000 2.000	2.000 2.007	2.000 2.007	2.000 2.007	2.000 2.007	2.000 2.007	2.000 2.007	2.000 2.007	Copy 1 -> A.
Fast flat top time (us)	0.008	0.010 0.008	0.008	0.010 0.008	0.010 0.008	0.010 0.008	0.010 0.008	0.010 0.008	Copy 1 -> Al
Peaking time (us)	0.500 0.512	0.500 0.512	0.500 0.512	0.500 0.512	0.500 0.512	0.500 0.512	0.500 0.512	0.500 0.512	Copy 1 -> Al
Max. peaking time (us)	2.000 1.984	2.000 1.984	2.000 1.984	2.000 1.984	2.000 1.984	2.000 1.984	2.000 1.984	2.000 1.984	Copy 1 -> Al
Flat top time (us)	0.100 0.096	0.096	0.096	0.100 0.096	0.100 0.096	0.100 0.096	0.100 0.096	0.100 0.096	Copy 1 -> Al
Energy threshold (keV)	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	Copy 1 -> A.
Baseline threshold (keV)	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	Copy 1 -> A.
Max. rise time (us)	0.250 0.248	0.250 0.248	0.250 0.248	0.250 0.248	0.250 0.248	0.250 0.248	0.250 0.248	0.250 0.248	Copy 1 -> Al
Reset recovery time (us)	6.000 6.000	6.000 6.000	6.000 6.000	6.000 6.000	6.000 6.000	6.000 6.000	6.000 6.000	6.000 6.000	Copy 1 -> Al
Zero peak freq. (Hz)	1000.0 1000.0	1000.0 1000.0	1000.0 1000.0	1000.0 1000.0	1000.0 1000.0	1000.0 1000.0	1000.0 1000.0	1000.0 1000.0	Copy 1 -> Al
Baseline samples	64 64	64 64	64 64	64 64	64 64	64 64	64 64	64 64	Copy 1 -> Al
Gain	7.000 7.000	7.000 7.000	7.000 7.000	7.000 7.000	7.000 7.000	7.000 7.000	7.000 7.000	7.000 7.000	Copy 1 -> Al
Input mode	DC_HiINP = DC_HiImp	Copy 1 -> Al							
Input polarity	Pos. = Pos.	Pos. Pos.	Pos. = Pos.	Pos. # Pos.	Copy 1 -> Al				
Analog offset	128 128	128 128	128 128	128 128	128 128	128 128	128 128	128 128	Copy 1 -> Al
Base offset	0	0	0 0	0 0	0 0	0 0	0	0 0	Copy 1 → A
Reset threshold	0 0	0	0 0	0 0	0 0	0 0	0	0 0	Copy 1 -> Al
Deconv. Time Const. (us)	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	Copy 1 -> A.
Maximum energy	30.00 30.00	30.00 30.00	30.00 30.00	30.00 30.00	30.00 30.00	30.00 30.00	30.00 30.00	30.00 30.00	Copy 1 -> Al

The following is the MEDM screen dante8Parameters.adl. This screen is used with the Dante8.

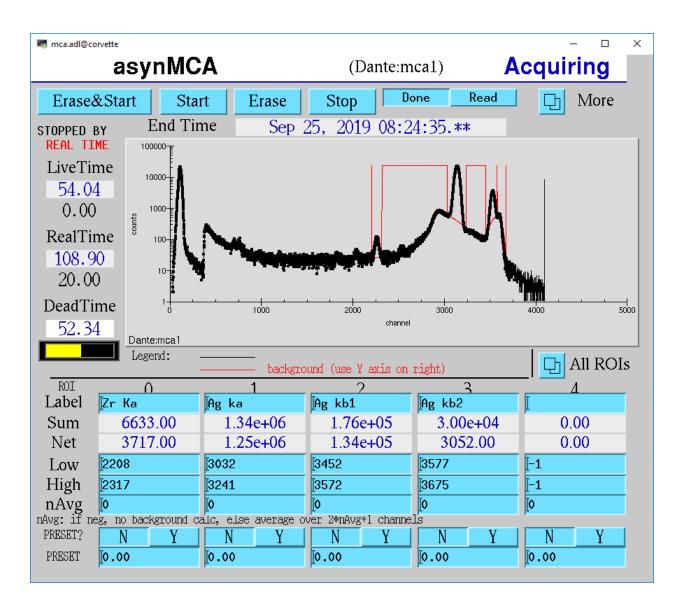
The following is the MEDM screen dante8MCA.adl. This screen is used with the Dante8.

The following is the MEDM screen dante8Statistics.adl. This screen is used with the Dante8.

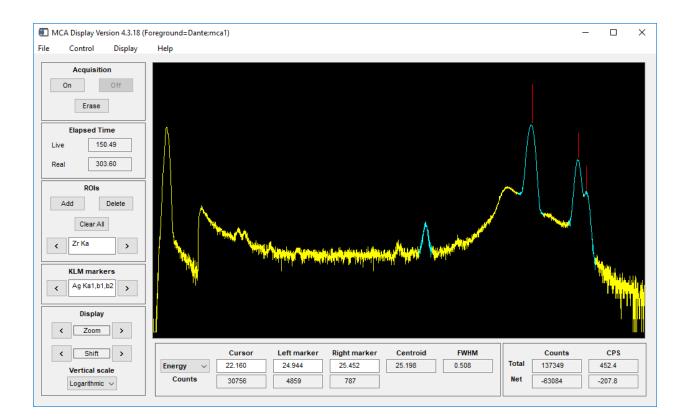
The following is the MEDM screen dante8ROI.adl. This screen is used with the Dante8. It allows copying the definition of 16 ROIs from board 0 to all boards.

1.7 MCA mode

The MCA mode collects a single MCA record at a time. It is compatible with the MCA record, and is the same as MCA operation on many other EPICS MCAs, e.g. Canberra AIM, Amptek, XIA (Saturn, Mercury, xMAP, FalconX), SIS38XX, and others.


It only supports counting for a preset real time, or counting indefinitely (PresetReal=0). It does not support PresetLive or PresetCounts which some other MCAs do.

The following is the MEDM screen mca.adl displaying the MCA spectrum as it is acquiring.


The following is the IDL MCA Display program showing the MCA spectrum as it is acquiring. This GUI allows defining ROIs graphically, fitting peaks and background, and many other features.

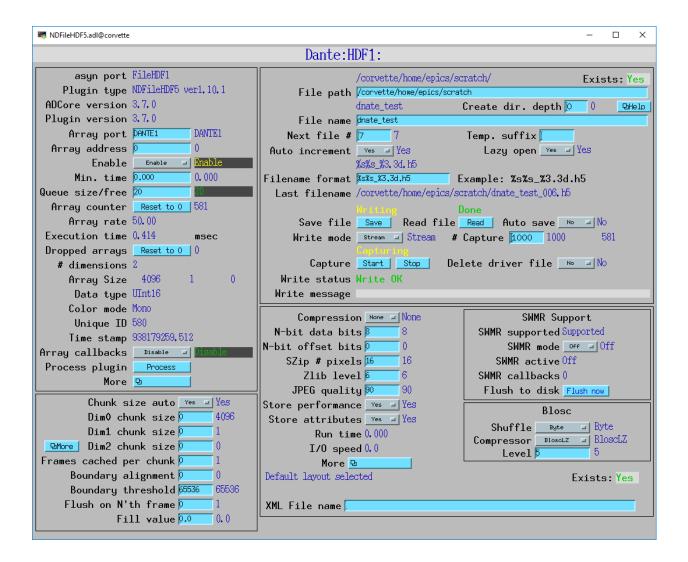
X dante8Statistics.adl@corv	X dante8Statistics.adl@corvette ×									
Dante Statistics (Dante:dante:)										
	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5	Channel 6	Channel 7	Channel 8		
Real time	10.000	10.001	0.000	0.000	10.001	10.001	10.001	10.001		
Live time	9.857	10.001	0.000	0.000	10.001	10.001	10.001	10.001		
ICR (kHz)	9.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
OCR (kHz)	9.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Triggers	108343	0	0	0	0	0	0	0		
Events	90147	0	0	0	0	0	0	0		
Fast DeadTime	12971	0	0	0	0	0	0	0		
F1 DeadTime	35659	0	0	0	0	0	0	0		
Zero Counts	9857	10001	0	0	10001	10001	10001	10001		
Baseline Counts	12065028	12154030	0	0	12153996	12154002	12154012	12153986		
Pileup	17066	0	0	0	0	0	0	0		
F1 Pileup	18335	0	0	0	0	0	0	0		
Not-F1 Pileup	0	0	0	0	0	0	0	0		
Reset Counts	1264	0	0	0	0	0	0	0		

🗙 dante8ROI.adl@	corvette				-	- 🗆	×
		Dante	dante:	ROI 1			
Channel	Label	Low	High	nAvg	Sum	Net]
1	Ăg Ka	1620	1750	<u>[</u> 0	32686,00	30916,00	
2	Ăg Ka	1620	1750	0	0.00	0.00	
3	Ăg Ka	1620	1750	0	0.00	0.00	
4	Âg Ka	1620	1750	0	0.00	0.00	
5	Ăg Ka	1620	1750	0	0.00	0.00	
6	Âg Ka	1620	1750	0	0.00	0.00	
7	ļÂg Ka	1620	1750	Į0	0.00	0.00	
8	Ăg Ka	1620	1750	Į0	0.00	0.00	
Copy 1->All <mark>C</mark>	opy all	detector	1 ROIs	to all d	etectors	by chan	nel
Copy 1->All <mark>(</mark>	opy all	detector	1 ROIs	to all d	etectors	by energ	gy

Dante

1.8 MCA mapping mode

These are the records for MCA Mapping mode. They are contained in dante.template.


EPICS re	ecord	Record	drvInfo	Description
names		types	string	
CurrentPixel		longin	DanteCur- rentPixel	In MCA Mapping mode this is the current pixel number. In List mode it is the total number of x-ray events received so far.
MappingPoints	5,	lon-	Dan-	The number of spectra to collect in MCA mapping mode.
Mapping-		gout,	teMap-	
Points_RBV		longin	pingPoints	

In MCA mapping mode the GatingMode can be "Free running", "Trig rising", "Trig falling", or "Trig both". In freerunning mode the Dante will begin the next spectrum when the PresetReal time has elapsed. In triggered mode the Dante will begin the next spectrum when a trigger occurs or when the PresetReal time has elapsed, whichever comes first. To advance only on trigger events set the PresetReal time to a value larger than the maximum time between triggers.

The MCA spectra are copied into NDArrays of dimensions [NumMCAChannels, NumBoards]. For a 1-channel Dante NumBoards is 1. The run-time statistics for each spectrum are copied into NDAttributes attached to each NDArray. The attribute names contain the board number, for example "RealTime_0".

The NDArrays can be used by any of the standard areaDetector plugins. For example, they can be streamed to HDF5, netCDF, or TIFF files.

The following is the MEDM screen NDFileHDF5.adl when the Dante is saving MCA mapping data to an HDF5 file.

1.9 List mode

EPICS	Record	drvInfo	Description
record	types	string	
names			
CurrentPixel	lon-	Dan-	In List mode this is the total number of x-ray events received so far.
	gin	teCur-	
		rent-	
		Pixel	
ListBuffer-	lon-	Dan-	The number of x-ray events per buffer in list mode. Once this number of
Size, List-	gout,	teList-	events has been received the events read from the Dante stored in NDArrays,
Buffer-	lon-	Buffer-	and callbacks are done to any registered plugins.
Size_RBV	gin	Size	

These are the records for list mode. They are contained in dante.template.

List mode events are 64-bit unsigned integers.

- Bits 0 to 15 are the x-ray energy, i.e. ADC value.
- Bits 16 to 17 are not used.
- Bits 18 to 61 are the timestamp in 8 ns units.
- Bits 62 and 63 are not used.

In list mode the x-ray events are copied into NDArrays. The data type of the NDArrays is NDUInt64, and the NDArrayDimensions are [ListBufferSize, NumBoards]. For a 1-channel Dante NumBoards is 1.

The run-time statistics for ListBufferSize events are copied into NDAttributes attached to each NDArray. The attribute names contain the board number, for example "RealTime_0". Note that these statistics are cummulative for the entire acquisition, not just since the last time the event buffer was read. By making ListBufferSize smaller one obtains a more frequent sampling of these statistics.

These statistics also update the run-time statistics records described above, so there is feedback while the list mode acquisition is in progress.

The first NumMCAChannels events are copied to the buffer for the MCA record for each board. In this case the MCA record will not contain an x-ray spectrum, but rather will contain the x-ray energy in ADC units on the vertical axis and the event number on the horizontal axis.

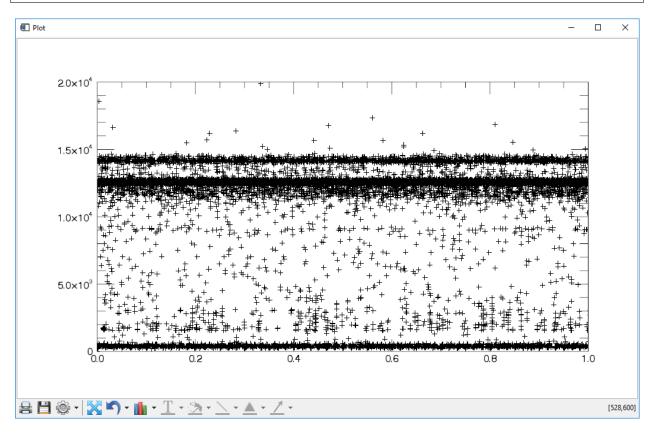
The NDArrays can be used by most of the standard areaDetector plugins. For example, they can be streamed to HDF5 or TIFF files. List-mode data cannot be written to a netCDF file, because the netCDF classic format does not support 64-bit integer data types.

The following is an IDL procedure to read the List mode data from an HDF5 file into two arrays, "energy" and "time":

read_nd_hdf5_ is a function that reads an HDF5 file written by the areaDetector NDFileHDF5 plugin:

```
function read_nd_hdf5, file, range=range, dataset=dataset
  if (n_elements(dataset) eq 0) then dataset = '/entry/data/data'
  file_id = h5f_open(file)
```

(continues on next page)


(continued from previous page)

```
dataset_id = h5d_open(file_id, dataset)
data = h5d_read(dataset_id)
h5d_close, dataset_id
h5f_close, file_id
return, data
end
```

The following is a plot of the energy events for the first 1 second of that data, using this IDL command:

```
IDL> p = plot(time, energy, xrange=[0,1], yrange=[0,20000], linestyle='none', symbol=

→'plus')
```

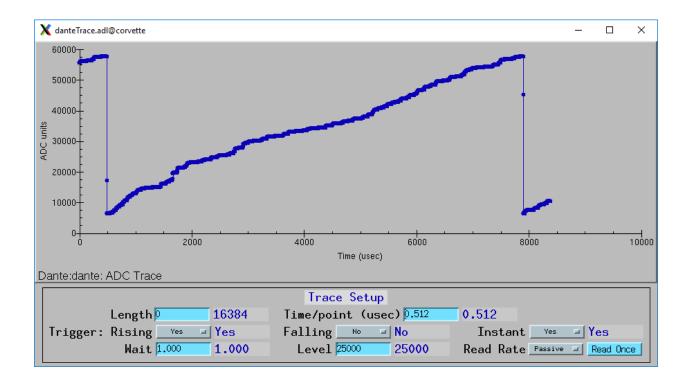

1.10 ADC trace waveforms

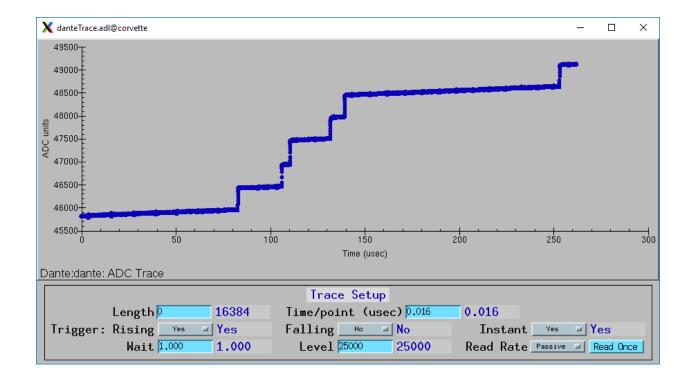
The Dante can collect ADC trace waveforms, which is effectively a digital oscilloscope of the pre-amp input signal. This very useful for setting the AnalogOffset record, and for diagnosing issues with the input.

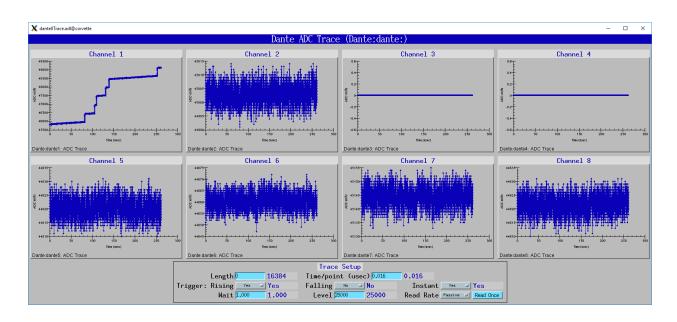
These are the records to control ADC traces. All of the records except TraceData affect all boards and are in dante.template. TraceData is specific to each board and is in danteN.template.

EPICS record	Record	l drvInfo	Description
names	types	string	
ReadTrace	bo	Dan- teRead- Trace	Arms the system to capture trace data on the next trigger event.
TraceTimeArray	wave- form	Dante- Trace- TimeAr- ray	Waveform record containing the time values for each point in Trace- Data. 64-bit float data type.
TraceTime, Trace- Time_RBV	ao, ai	Dante- Trace- Time	Time per sample of the ADC trace data in microseconds. Allowed range is 0.016 to 0.512.
TraceLength, Trace- Length_RBV	lon- gout, lon- gin	Dante- Trace- Length	The number of samples to read in the ADC trace. This must be a mul- tiple of 16384, and will be limited by the NELM field of the TraceData and TraceTimeArray waveform records.
TraceTrigger- Level, TraceTrig- gerLevel_RBV	lon- gout, lon- gin	Dante- TraceTrig- gerLevel	The trigger level in ADC units (0 to 65535).
TraceTriggerRis- ing, TraceTrigger- Rising_RBV	bo, bi	Dante- TraceTrig- gerRising	Trigger the ADC trace as it rises through TraceTriggerLevel. Choices are "No" (0) and "Yes" (1).
TraceTrig- gerFalling, TraceTrigger- Falling_RBV	bo, bi	Dante- TraceTrig- ger- Falling	Trigger the ADC trace as it fals through TraceTriggerLevel. Choices are "No" (0) and "Yes" (1).
TraceTriggerIn- stant, TraceTrig- gerInstant_RBV	bo, bi	Dante- TraceTrig- gerInstant	Trigger the ADC trace even if a rising or falling trigger is not detected. Choices are "No" (0) and "Yes" (1).
TraceTriggerWait, TraceTrigger- Wait_RBV	ao, ai	Dante- TraceTrig- gerWait	The delay time after the trigger condition is satisfied before beginning the ADC trace.
TraceData	wave- form	Dante- Trace- Data	Waveform record containing the ADC trace data. 32-bit integer data type.

The following are the MEDM screen danteTrace.adl displaying two ADC traces. These were done with a Vortex SDD detctor and a Cd109 source, which produces Ag K x-rays. The traces were captured with TraceTriggerRising=Yes and TraceTriggerLevel=50000. The first trace was done with TraceTime=0.512 microseconds, so the total time is 8192 microseconds. 2 resets are visible on this trace. The second trace was done with TraceTime=0.016 microseconds, so the total time is 256 microseconds. The individual 22 keV Ag x-ray steps can be seen in this trace.


The following is the MEDM screen dante8Trace.adl. This screen is used with the Dante8.


1.11 IOC startup script


The command to configure a Dante in the startup script is:

DanteConfig(portName, ipAddress, totalBoards, maxMemory)

portName is the name for the Dante port driver

ipAddress is the IP address of the Dante

totalBoards is the total number of boards in the Dante system, including those that may be disabled.

maxMemory is the maximum amount of memory the NDArrayPool is allowed to allocate. 0 means unlimited.

1.12 Performance

1.12.1 Dante8 free-running mapping mode

The following table shows the maximum number of pixels/s for MCA mapping mode as a function of the number of boards enabled and the number of MCA channels on the Dante8. The tests were done under the following conditions:

- MappingPoints = 2000
- PollTime = 0.01
- ArrayCallbacks = Enable
- WaitForPlugins = Yes
- TriggerMode = FreeRunning

The PresetReal time was decreased in 1 ms steps until the mapping mode acquisition no longer collected the requested number of pixels.

The PresetReal time on the Dante is limited to multiples of 1 ms, so the pixel rate in FreeRun mode is limited to 1000, 500, 333, 250, etc.

MCA Channels	1 board enabled	2 boards enabled	4 boards enabled	8 boards enabled
1024	1000	1000	1000	500
2048	1000	1000	500	333
4096	1000	1000	1000	1000

Table 1: Maximum pixel rate in Hz (spectra/board/second) for Trigger-Mode=FreeRunning

1.12.2 Dante8 externally triggered mapping mode

The following table shows the maximum number of pixels/s for MCA mapping mode as a function of the number of boards enabled and the number of MCA channels on the Dante8. The tests were done under the following conditions:

- MappingPoints = 2000
- PollTime = 0.01
- ArrayCallbacks = Enable
- WaitForPlugins = Yes
- TriggerMode = Trig Rising
- PresetReal = 0.1 (does not matter)

The Dante8 was triggered by an external programmable pulse generator. The pulse width was 10 microseconds. The pulse generator was programmed to output 2000 pulses.

The pulse frequency was increased until the mapping mode acquisition no longer collected the requested number of pixels.

IV				
MCA Channels	1 board enabled	2 boards enabled	4 boards enabled	8 boards enabled
1024	6200	2300	900	350
2048	1500	750	340	150
4096	8060	8060	8060	8060

Table 2: Maximum pixel rate in Hz (spectra/board/second) for Tr	igger-
Mode=Trig Rising	

The same results as above were obtained for TriggerMode=Gate High.

In 4096 channel mode all spectra are eventually collected for trigger frequencies up to 8000 Hz. However, in 2048 and 1024 channel mode the maximum trigger frequency is much less before spectra are lost, and the EPICS IOC needs to be restarted.