
Dante

2023-March-24

Contents

1 Table of Contents 3
1.1 Overview . 3
1.2 System controls . 4
1.3 Configuration parameters . 6
1.4 Run-time statistics . 8
1.5 medm screens . 8
1.6 Multi-element systems . 8
1.7 MCA mode . 10
1.8 MCA mapping mode . 13
1.9 List mode . 15
1.10 ADC trace waveforms . 16
1.11 IOC startup script . 17
1.12 Performance . 19

1.12.1 Dante8 free-running mapping mode . 19
1.12.2 Dante8 externally triggered mapping mode . 20

i

ii

Dante

author Mark Rivers, University of Chicago

Contents 1

Dante

2 Contents

CHAPTER 1

Table of Contents

1.1 Overview

This is an EPICS driver for the XGLab Dante digital x-ray spectroscopy system. The source code is in the dante
repository in the Github epics-modules project. The Dante is available in single channel (Dante1) and 8-channel
(Dante8) versions. This module is intended to work with either, though it has currently only been tested on the single-
channel version. In this document NumBoards refers to the number of enabled input channels, e.g. 1 for a Dante1, up
to 8 for a Dante8, and >8 for systems with more than one Dante8 daisy-chained together. If a channel is disabled then
it is not counted in NumBoards.

The Dante can collect data in 3 different modes:

• Single MCA spectrum. It acquires a single MCA spectrum on all channels.

• MCA mapping mode. It acquires multiple spectra in rapid succession, and it often used for making an x-ray
map where there is an MCA spectrum for each channel at each pixel. The advance to the next pixel can come
from an internal clock or an external trigger.

• List mapping mode. It acquires each x-ray event energy and timestamp in a list buffer.

The Dante driver is derived from the base class asynNDArrayDriver, which is part of the EPICS areaDetector package.
The allows the Dante driver to use all of the areaDetector plugins for file saving in MCA mapping and list modes, and
for other purposes. It also implements the mca interface from the EPICS mca module. The EPICS mca record can be
used to display the spectra and control the basic operation including Regions-of-Interest (ROIs).

The Dante driver can be used on both Windows and Linux. A Windows machine with a USB interface is required
to load new firmware. Otherwise the module can be used from either Linux or Windows over Ethernet. The Linux
library provided can run on most Linux versions, including RHEL7/Centos7.

This document does not attempt to give an explanation of the principles of operation of the Dante, or a detailed explana-
tion of the many configuration parameters for the digital pulse processing. The user should consult the DanteManual
for this information.

3

https://www.xglab.it
https://github.com/epics-modules/dante
https://areadetector.github.io/master/ADCore/NDArray.html#asynndarraydriver
https://areadetector.github.io
https://github.com/epics-modules/mca

Dante

1.2 System controls

These records are in the file dante.template. This database is loaded once for the Dante system. It provides
control of the system-wide settings for the system.

4 Chapter 1. Table of Contents

Dante

EPICS
record
names

Record
types

drv-
Info
string

Description

Collect-
Mode,
Collect-
Mode_RBV

mbbo,
mbbi

Dan-
teCol-
lect-
Mode

Controls the data collection mode. Choices are “MCA” (0), “MCA Mapping” (1) and
“List” (2).

Gating-
Mode,
Gating-
Mode_RBV

mbbo,
mbbi

Dan-
te-
Gat-
ing-
Mode

Controls the gating mode. Choices are “Free running” (0), “Trig rising” (1), “Trig
falling” (2), “Trig both” (3), “Gate high” (4), “Gate low” (5).

NumM-
CAChan-
nels,
NumM-
CAChan-
nels_RBV

mbbo,
mbbi

MCA_NUM_CHANNELSThe number of MCA channels to use. Choices are 1024, 2048, 4096.

Poll-
Time,
Poll-
Time_RBV

ao,
ai

Dan-
tePoll-
Time

The time between polls when reading completion status, MCA mapping data, and list
mode data from the driver. 0.01 second is a reasonable value that will provide good
response and resource utilization.

Prese-
tReal

ao MCA_PRESET_REALSets the preset real time. Set this to 0 to count forever in MCA mode or List mode.

EraseS-
tart

bo N.A. Processing this record starts acquisition for all boards in the selected CollectMode.

StartAll bo MCA_START_ACQUIREProcessing this record starts acquisition for all boards in the selected CollectMode. This
record should not be used by higher-level software, it is processed by EraseStart.

MCAAc-
quire-
Busy

busy N.A. This record goes to 1 (“Collecting”) when EraseStart is processed. It goes back to 0
(“Done”)when 3 conditions are satisfied. 1) MCAAcquiring is 0; 2) All MCA records
have .ACQG field=0; 3)AcquireBusy from areaDetector=0. The last condition can en-
sure that all plugins are done processing if WaitForPlugins is set.

MCAAc-
quiring

bi MCA_ACQUIRINGThis record is 1 when the Dante driver itself is acquiring, and 0 when it is done. This
record is generally not used by higher level software, use MCAAcquireBusy instead,
since it indicates when all components are done.

StopAll bo MCA_STOP_ACQUIREProcessing this record stops acquisition for all boards in the selected CollectMode. This
only needs to be used to terminate acquisition before it would otherwise stop because
PresetReal or NumMappingPoints have been reached.

ReadAll bo N.A. Processing this record reads the MCA data and statistics for all boards. This .SCAN field
of this record is typically set to periodic, i.e. “1 second”, “.1 second”, etc. to provide
user feedback while acquisition is in progress. It can be set to “Passive” and the system
will still read the data once when acquisition completes. This can be used to improve
performance at very short PresetReal times. This record is disabled when acquisition is
complete to reduce unneeded resource usage.

ReadAl-
lOnce

bo N.A. Processing this record reads the MCA data and statistics for all boards. This record
is processed by ReadAll. It can be manually processed to read the data even when
acquisition is complete.

Elapse-
dReal

ai MCA_ELAPSED_REALThe elapsed real time.

Elaps-
edLive

ai MCA_ELAPSED_LIVEThe elapsed live time.

Dead-
Time

ai Dant-
eDead-
Time

The cummulative deadtime.

IDead-
Time

ai Dan-
teI-
Dead-
Time

The “instantaneous” deadtime since the previous readout.
1.2. System controls 5

Dante

1.3 Configuration parameters

These records control the configuration of the digital signal processing. The readback (_RBV) values may differ
slightly from the output values because of the discrete nature of the system clocks and MCA bins.

These parameters are specific to a single board, and are contained in DanteN.template.

6 Chapter 1. Table of Contents

Dante

EPICS
record
names

Record
types

drvInfo
string

Description

Enable-
Board,
Enable-
Board_RBV

bo,
bi

Dan-
teEn-
able-
Board

Enables (1) or disables (0) a board in a Dante8. This allows using fewer than 8
channels on a Dante8.

InputMode,
Input-
Mode_RBV

mbbo,
mbbi

Dan-
teInput-
Mode

The analog input mode. Choices are “DC_HiImp” (0), “DC_LoImp” (1).
“AC_Slow” (2), and “AC_Fast” (3).

Input-
Polarity,
InputPolar-
ity_RBV

bo,
bi

Dan-
teIn-
verted-
Input

The pre-amp output polarity. Choices are “Pos.” (0) and “Neg.” (1).

MaxEnergy,
MaxEn-
ergy_RBV

ao,
ai

Dan-
teMax-
Energy

The actual energy of the last channel. The user must provide this value based on
the energy calibration. It is used to provide meaningful units for FastThreshold,
EnergyThreshold, and BaselineThreshold.

Analo-
gOffset,
AnalogOff-
set_RBV

lon-
gout,
lon-
gin

Dan-
teAnal-
ogOff-
set

The analog offset applied to the input signal, 0 to 255. This offset must be
adjusted to keep the input signal within the range of the ADC. This should be
adjusted using the ADC Trace plot with a long sampling to see the range of the
input signal through a reset event.

Reset-
Threshold,
Reset-
Thresh-
old_RBV

lon-
gout,
lon-
gin

Dan-
teReset-
Thresh-
old

The reset threshold in ADC units per N 8 ns sample intervals. The Dante detects
a reset the signal changes by more than this amount. The standard firmware uses
N=6 and this ResetThreshold value. The high-rate firmware uses N=1 and fixes
ResetThreshold=256, so this parameter has no effect.

ResetRe-
coveryTime,
ResetRe-
covery-
Time_RBV

ao,
ai

Dan-
teRese-
tRecov-
eryTime

The time in microseconds to wait after a reset event.

Gain,
Gain_RBV

ao,
ai

Dante-
Gain

The gain which controls the number of ADC units per MCA bin. Gains of
1.0-8.0 are typical.

FastThresh-
old, Fast-
Thresh-
old_RBV

ao,
ai

Dante-
FastFil-
terThresh-
old

The fast filter threshold in keV.

FastPeak-
ingTime,
Fast-
Peaking-
Time_RBV

ao,
ai

Dan-
teEdge-
Peak-
ingTime

The peaking time of the fast filter in microseconds.

FastFlat-
TopTime,
FastFlatTop-
Time_RBV

ao,
ai

Dan-
teEdge-
FlatTop

The flat top time of the fast filter in microseconds.

Ener-
gyThresh-
old, Ener-
gyThresh-
old_RBV

ao,
ai

Dan-
teEner-
gyFil-
terThresh-
old

The energy filter threshold in keV.

Peaking-
Time,
Peaking-
Time_RBV

ao,
ai

Dante-
Peak-
ingTime

The peaking time of the slow filter in microseconds.

MaxPeak-
ingTime,
Max-
Peaking-
Time_RBV

ao,
ai

Dan-
teMax-
Peak-
ingTime

The maximum peaking time of the slow filter in microseconds. Used only with
the high-rate firmware. Must be set to 0 when using the standard firmware.

FlatTop-
Time,
FlatTop-
Time_RBV

ao,
ai

Dante-
FlatTop

The flat top time of the slow filter in microseconds.

Base-
lineThresh-
old, Base-
lineThresh-
old_RBV

ao,
ai

Dan-
teEner-
gyBase-
lineThresh-
old

The baseline filter threshold in keV.

MaxRise-
Time,
MaxRise-
Time_RBV

ao,
ai

Dan-
teMaxRise-
Time

The maximum rise time in usec. Pulses with a longer rise time will be pileup
rejected.

Zero-
PeakFreq,
ZeroPeak-
Freq_RBV

ao,
ai

Dan-
teZero-
Peak-
Freq

The frequency of the zero-energy peak in Hz.

Baseline-
Samples,
Baseli-
neSam-
ples_RBV

lon-
gout,
lon-
gin

Dante-
Baseli-
neSam-
ples

The number of baseline samples. Typical value is 64.

Time-
Constant,
TimeCon-
stant_RBV

ao,
ai

Dante-
Time-
Con-
stant

The time constant. Used for digital deconvolution in the case of continuous reset
signals.

BaseOffset,
BaseOff-
set_RBV

lon-
gout,
lon-
gin

Dante-
Base-
Offset

The base offset. Used for digital deconvolution in the case of continuous reset
signals.

1.3. Configuration parameters 7

Dante

1.4 Run-time statistics

These are the records for run-time statistics.

These parameters are specific to a single board, and are contained in DanteN.template.

EPICS record names Record types drvInfo string Description
ElapsedRealTime ai MCA_ELAPSED_REAL The elapsed real time in seconds.
ElapsedLiveTime ai MCA_ELAPSED_LIVE The elapsed live time in seconds.
InputCountRate ai DanteInputCountRate The input count rate in kHz.
OutputCountRate ai DanteOutputCountRate The output count rate in kHz.
Triggers longin DanteTriggers The number of triggers received.
Events longin DanteEvents The number of events received.
FastDeadTime longin DanteEdgeDTime The fast deadtime in clock ticks.
F1DeadTime longin DanteFilt1DT The filter 1 deadtime in clock ticks.
ZeroCounts longin DanteZeroCounts The number of zero count events.
BaselineCount longin DanteBaselinesValue The number of baseline events.
PileUp longin DantePUPValue The number of pileup events.
F1PileUp longin DantePUPF1Value The number of filter 1 pileup events.
NotF1PileUp longin DantePUPNotF1Value The number of not filter 1 pileup events.
ResetCounts longin DanteResetCounterValue The number of reset events.
LastTimeStamp ai DanteLastTimeStamp The last timestamp time in clock ticks.

1.5 medm screens

The following is the main MEDM screen dante1.adl. This screen is used with the single-channel Dante1.

The following is the main MEDM screen dante8.adl. This screen is used with the 8-channel Dante8.

1.6 Multi-element systems

Multi-element detector (MED) systems use an EPICS State Notation Language (SNL) program to synchronize and
copy PVs.

These are the records for multi-element detector systems. They are contained in danteMED.template.

EPICS
record
names

Record
type

Description

SNL-
Con-
nected

bi Indicates whether or not the SNL program is running.

Dead-
Time

ai The average deadtime of all the enabled boards.

IDead-
Time

ai The average instantaneous deadtime of all the enabled boards.

Copy[XXX]bo Copies the setting XXX from board 0 to all other enabled boards. XXX can be any of the config-
uration parameters described above, for example Gain, AnalogOffset, etc. XXX can also be the
definition of the ROIs for the MCA records. In this case the copy can be either by MCA channel
number, or by x-ray energy, using the calibration coefficients in the MCA record.

8 Chapter 1. Table of Contents

Dante

1.6. Multi-element systems 9

Dante

The following is the MEDM screen dante8Parameters.adl. This screen is used with the Dante8.

The following is the MEDM screen dante8MCA.adl. This screen is used with the Dante8.

The following is the MEDM screen dante8Statistics.adl. This screen is used with the Dante8.

The following is the MEDM screen dante8ROI.adl. This screen is used with the Dante8. It allows copying the
definition of 16 ROIs from board 0 to all boards.

1.7 MCA mode

The MCA mode collects a single MCA record at a time. It is compatible with the MCA record, and is the same as
MCA operation on many other EPICS MCAs, e.g. Canberra AIM, Amptek, XIA (Saturn, Mercury, xMAP, FalconX),
SIS38XX, and others.

It only supports counting for a preset real time, or counting indefinitely (PresetReal=0). It does not support PresetLive
or PresetCounts which some other MCAs do.

The following is the MEDM screen mca.adl displaying the MCA spectrum as it is acquiring.

The following is the IDL MCA Display program showing the MCA spectrum as it is acquiring. This GUI allows
defining ROIs graphically, fitting peaks and background, and many other features.

10 Chapter 1. Table of Contents

Dante

1.7. MCA mode 11

Dante

12 Chapter 1. Table of Contents

Dante

1.8 MCA mapping mode

These are the records for MCA Mapping mode. They are contained in dante.template.

EPICS record
names

Record
types

drvInfo
string

Description

CurrentPixel longin DanteCur-
rentPixel

In MCA Mapping mode this is the current pixel number. In List
mode it is the total number of x-ray events received so far.

MappingPoints,
Mapping-
Points_RBV

lon-
gout,
longin

Dan-
teMap-
pingPoints

The number of spectra to collect in MCA mapping mode.

In MCA mapping mode the GatingMode can be “Free running”, “Trig rising”, “Trig falling”, or “Trig both”. In free-
running mode the Dante will begin the next spectrum when the PresetReal time has elapsed. In triggered mode the
Dante will begin the next spectrum when a trigger occurs or when the PresetReal time has elapsed, whichever comes
first. To advance only on trigger events set the PresetReal time to a value larger than the maximum time between
triggers.

The MCA spectra are copied into NDArrays of dimensions [NumMCAChannels, NumBoards]. For a 1-channel Dante
NumBoards is 1. The run-time statistics for each spectrum are copied into NDAttributes attached to each NDArray.
The attribute names contain the board number, for example “RealTime_0”.

The NDArrays can be used by any of the standard areaDetector plugins. For example, they can be streamed to HDF5,
netCDF, or TIFF files.

The following is the MEDM screen NDFileHDF5.adl when the Dante is saving MCA mapping data to an HDF5 file.

1.8. MCA mapping mode 13

Dante

14 Chapter 1. Table of Contents

Dante

1.9 List mode

These are the records for list mode. They are contained in dante.template.

EPICS
record
names

Record
types

drvInfo
string

Description

CurrentPixel lon-
gin

Dan-
teCur-
rent-
Pixel

In List mode this is the total number of x-ray events received so far.

ListBuffer-
Size, List-
Buffer-
Size_RBV

lon-
gout,
lon-
gin

Dan-
teList-
Buffer-
Size

The number of x-ray events per buffer in list mode. Once this number of
events has been received the events read from the Dante stored in NDArrays,
and callbacks are done to any registered plugins.

List mode events are 64-bit unsigned integers.

• Bits 0 to 15 are the x-ray energy, i.e. ADC value.

• Bits 16 to 17 are not used.

• Bits 18 to 61 are the timestamp in 8 ns units.

• Bits 62 and 63 are not used.

In list mode the x-ray events are copied into NDArrays. The data type of the NDArrays is NDUInt64, and the NDAr-
rayDimensions are [ListBufferSize, NumBoards]. For a 1-channel Dante NumBoards is 1.

The run-time statistics for ListBufferSize events are copied into NDAttributes attached to each NDArray. The attribute
names contain the board number, for example “RealTime_0”. Note that these statistics are cummulative for the entire
acquisition, not just since the last time the event buffer was read. By making ListBufferSize smaller one obtains a
more frequent sampling of these statistics.

These statistics also update the run-time statistics records described above, so there is feedback while the list mode
acquisition is in progress.

The first NumMCAChannels events are copied to the buffer for the MCA record for each board. In this case the MCA
record will not contain an x-ray spectrum, but rather will contain the x-ray energy in ADC units on the vertical axis
and the event number on the horizontal axis.

The NDArrays can be used by most of the standard areaDetector plugins. For example, they can be streamed to HDF5
or TIFF files. List-mode data cannot be written to a netCDF file, because the netCDF classic format does not support
64-bit integer data types.

The following is an IDL procedure to read the List mode data from an HDF5 file into two arrays, “energy” and “time”:

pro read_dante_list_data, filename, energy, time
data = read_nd_hdf5(filename)
energy = uint(data and 'ffff'x)
time = double(ishft((data and '3ffffffffffc0000'x), -18))*8e-9

end

read_nd_hdf5_ is a function that reads an HDF5 file written by the areaDetector NDFileHDF5 plugin:

function read_nd_hdf5, file, range=range, dataset=dataset
if (n_elements(dataset) eq 0) then dataset = '/entry/data/data'
file_id = h5f_open(file)

(continues on next page)

1.9. List mode 15

Dante

(continued from previous page)

dataset_id = h5d_open(file_id, dataset)
data = h5d_read(dataset_id)
h5d_close, dataset_id
h5f_close, file_id
return, data

end

The following is a plot of the energy events for the first 1 second of that data, using this IDL command:

IDL> p = plot(time, energy, xrange=[0,1], yrange=[0,20000], linestyle='none', symbol=
→˓'plus')

1.10 ADC trace waveforms

The Dante can collect ADC trace waveforms, which is effectively a digital oscilloscope of the pre-amp input signal.
This very useful for setting the AnalogOffset record, and for diagnosing issues with the input.

These are the records to control ADC traces. All of the records except TraceData affect all boards and are in
dante.template. TraceData is specific to each board and is in danteN.template.

16 Chapter 1. Table of Contents

Dante

EPICS record
names

Record
types

drvInfo
string

Description

ReadTrace bo Dan-
teRead-
Trace

Arms the system to capture trace data on the next trigger event.

TraceTimeArray wave-
form

Dante-
Trace-
TimeAr-
ray

Waveform record containing the time values for each point in Trace-
Data. 64-bit float data type.

TraceTime, Trace-
Time_RBV

ao, ai Dante-
Trace-
Time

Time per sample of the ADC trace data in microseconds. Allowed
range is 0.016 to 0.512.

TraceLength,
Trace-
Length_RBV

lon-
gout,
lon-
gin

Dante-
Trace-
Length

The number of samples to read in the ADC trace. This must be a mul-
tiple of 16384, and will be limited by the NELM field of the TraceData
and TraceTimeArray waveform records.

TraceTrigger-
Level, TraceTrig-
gerLevel_RBV

lon-
gout,
lon-
gin

Dante-
TraceTrig-
gerLevel

The trigger level in ADC units (0 to 65535).

TraceTriggerRis-
ing, TraceTrigger-
Rising_RBV

bo, bi Dante-
TraceTrig-
gerRising

Trigger the ADC trace as it rises through TraceTriggerLevel. Choices
are “No” (0) and “Yes” (1).

TraceTrig-
gerFalling,
TraceTrigger-
Falling_RBV

bo, bi Dante-
TraceTrig-
ger-
Falling

Trigger the ADC trace as it fals through TraceTriggerLevel. Choices
are “No” (0) and “Yes” (1).

TraceTriggerIn-
stant, TraceTrig-
gerInstant_RBV

bo, bi Dante-
TraceTrig-
gerInstant

Trigger the ADC trace even if a rising or falling trigger is not detected.
Choices are “No” (0) and “Yes” (1).

TraceTriggerWait,
TraceTrigger-
Wait_RBV

ao, ai Dante-
TraceTrig-
gerWait

The delay time after the trigger condition is satisfied before beginning
the ADC trace.

TraceData wave-
form

Dante-
Trace-
Data

Waveform record containing the ADC trace data. 32-bit integer data
type.

The following are the MEDM screen danteTrace.adl displaying two ADC traces. These were done with a Vortex SDD
detctor and a Cd109 source, which produces Ag K x-rays. The traces were captured with TraceTriggerRising=Yes and
TraceTriggerLevel=50000. The first trace was done with TraceTime=0.512 microseconds, so the total time is 8192
microseconds. 2 resets are visible on this trace. The second trace was done with TraceTime=0.016 microseconds, so
the total time is 256 microseconds. The individual 22 keV Ag x-ray steps can be seen in this trace.

The following is the MEDM screen dante8Trace.adl. This screen is used with the Dante8.

1.11 IOC startup script

The command to configure a Dante in the startup script is:

DanteConfig(portName, ipAddress, totalBoards, maxMemory)

portName is the name for the Dante port driver

1.11. IOC startup script 17

Dante

18 Chapter 1. Table of Contents

Dante

ipAddress is the IP address of the Dante

totalBoards is the total number of boards in the Dante system, including those that may be disabled.

maxMemory is the maximum amount of memory the NDArrayPool is allowed to allocate. 0 means unlimited.

1.12 Performance

1.12.1 Dante8 free-running mapping mode

The following table shows the maximum number of pixels/s for MCA mapping mode as a function of the number of
boards enabled and the number of MCA channels on the Dante8. The tests were done under the following conditions:

• MappingPoints = 2000

• PollTime = 0.01

• ArrayCallbacks = Enable

• WaitForPlugins = Yes

• TriggerMode = FreeRunning

The PresetReal time was decreased in 1 ms steps until the mapping mode acquisition no longer collected the requested
number of pixels.

The PresetReal time on the Dante is limited to multiples of 1 ms, so the pixel rate in FreeRun mode is limited to 1000,
500, 333, 250, etc.

Table 1: Maximum pixel rate in Hz (spectra/board/second) for Trigger-
Mode=FreeRunning

MCA Channels 1 board enabled 2 boards enabled 4 boards enabled 8 boards enabled
1024 1000 1000 1000 500
2048 1000 1000 500 333
4096 1000 1000 1000 1000

1.12. Performance 19

Dante

1.12.2 Dante8 externally triggered mapping mode

The following table shows the maximum number of pixels/s for MCA mapping mode as a function of the number of
boards enabled and the number of MCA channels on the Dante8. The tests were done under the following conditions:

• MappingPoints = 2000

• PollTime = 0.01

• ArrayCallbacks = Enable

• WaitForPlugins = Yes

• TriggerMode = Trig Rising

• PresetReal = 0.1 (does not matter)

The Dante8 was triggered by an external programmable pulse generator. The pulse width was 10 microseconds. The
pulse generator was programmed to output 2000 pulses.

The pulse frequency was increased until the mapping mode acquisition no longer collected the requested number of
pixels.

Table 2: Maximum pixel rate in Hz (spectra/board/second) for Trigger-
Mode=Trig Rising

MCA Channels 1 board enabled 2 boards enabled 4 boards enabled 8 boards enabled
1024 6200 2300 900 350
2048 1500 750 340 150
4096 8060 8060 8060 8060

The same results as above were obtained for TriggerMode=Gate High.

In 4096 channel mode all spectra are eventually collected for trigger frequencies up to 8000 Hz. However, in 2048 and
1024 channel mode the maximum trigger frequency is much less before spectra are lost, and the EPICS IOC needs to
be restarted.

20 Chapter 1. Table of Contents

	Table of Contents
	Overview
	System controls
	Configuration parameters
	Run-time statistics
	medm screens
	Multi-element systems
	MCA mode
	MCA mapping mode
	List mode
	ADC trace waveforms
	IOC startup script
	Performance
	Dante8 free-running mapping mode
	Dante8 externally triggered mapping mode

